Torque-coupled thermodynamic model for FoF1 -ATPase
نویسندگان
چکیده
منابع مشابه
Torque-coupled thermodynamic model for F_{o}F_{1}-ATPase.
F_{o}F_{1}-ATPase is a motor protein complex that utilizes transmembrane ion flow to drive the synthesis of adenosine triphosphate (ATP) from adenosine diphosphate (ADP) and phosphate (Pi). While many theoretical models have been proposed to account for its rotary activity, most of them focus on the F_{o} or F_{1} portions separately rather than the complex as a whole. Here, we propose a simple...
متن کاملRotary torque produced by proton motive force in FoF1 motor.
We have attempted direct observation of the light-driven rotation of a FoF(1)-ATP motor. The FoF(1)-ATP motor was co-reconstituted by the deletion-delta subunit of FoF(1)-ATP synthase with bacteriorhodopsins (BRs) into a liposome. The BR converts radiation energy into electrochemical gradient of proton to drive the FoF(1)-ATP motor. Therefore, the light-driven rotation of FoF(1)-ATP motor has b...
متن کاملChanges of carp FoF1-ATPase in association with temperature acclimation.
Previously we have shown, using two-dimensional electrophoresis, that mitochondrial ATP synthase (F(o)F(1)-ATPase) beta-subunit is the 55-kDa protein increased in cold-acclimated carp Cyprinus carpio (Kikuchi K, Itoi S, and Watabe S. Fisheries Sci 65: 629-636, 1999). To clarify the coordinate expression in various subunits of carp F(o)F(1)-ATPase with temperature acclimation, we examined the di...
متن کاملViscoelastic dynamics of actin filaments coupled to rotary F-ATPase: angular torque profile of the enzyme.
ATP synthase (F(O)F(1)) operates as two rotary motor/generators coupled by a common shaft. Both portions, F(1) and F(O), are rotary steppers. Their symmetries are mismatched (C(3) versus C(10-14)). We used the curvature of fluorescent actin filaments, attached to the rotating c-ring, as a spring balance (flexural rigidity of 8. 10(-26) Nm(2)) to gauge the angular profile of the output torque at...
متن کاملHow Fo-ATPase generates rotary torque.
The F-ATPases synthesize ATP using a transmembrane ionmotive force (IMF) established by the electron transport chain. This transduction involves first converting the IMF to a rotary torque in the transmembrane Fo portion. This torque is communicated from Fo to the F1 portion where the energy is used to release the newly synthesized ATP from the catalytic sites according to Boyer's binding chang...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2017
ISSN: 2470-0045,2470-0053
DOI: 10.1103/physreve.95.052413